I never truly appreciated that technology until I tried Bauer NXGs and APX 2s to get away from the weight of my Langes. I appreciated the weight reduction and lateral stiffness of the new materials; but I found it impossible to lace them tightly enough for lateral support without restricting my forward flexion. I ended up returning the APXs for a refund and reselling the NXGs on eBay at a 50% loss, because I'd already sharpened and skated on them (once). About a year later, I tried once more with Graf 5035s and after skating in them 3 or 4 times, I resold them at a 50% loss because I decided that it would probably take me way too long just to be able to skate the same way I skate in my Langes and that I didn't want to invest that kind of time trying to do that, practicing in them and playing in my Langes for a full season or two.
I doubt that flexion zones will provide the solution, because they'll probably only work in a single plane. The problem that gets overlooked in these discussions is that lacing and boot stiffness control movement in the lateral and longitudinal planes simultaneously without any way of adjusting them independently. As advanced as material technology is, I can't imagine that they'll be able to come up with materials that flex differently in different planes simultaneously, much less at any remotely-affordable price for a product that's expected to be flexed hundreds of thousands or millions of times during its intended life.
That's what's so great about the hinge: I can tape above the hinge for lateral support without affecting forward flexion.